

### OXFORD CAMBRIDGE AND RSA EXAMINATIONS

**10 JANUARY 2006** 

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

# MATHEMATICS

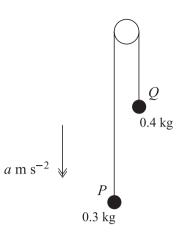
Mechanics 1

Tuesday

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1) Afternoon

1 hour 30 minutes

4728

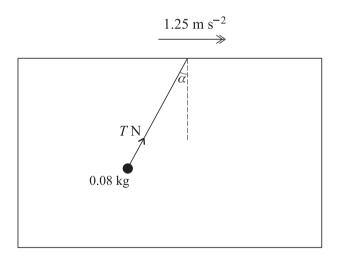

#### TIME 1 hour 30 minutes

### INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of • accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by  $q \,\mathrm{m \, s^{-2}}$ . Unless otherwise instructed, when a numerical value is needed, use q = 9.8.
- You are permitted to use a graphical calculator in this paper.

### **INFORMATION FOR CANDIDATES**

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying • larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.




Particles *P* and *Q*, of masses 0.3 kg and 0.4 kg respectively, are attached to the ends of a light inextensible string. The string passes over a smooth fixed pulley. The system is in motion with the string taut and with each of the particles moving vertically. The downward acceleration of *P* is  $a \text{ m s}^{-2}$  (see diagram).

(i) Show that 
$$a = -1.4$$
. [4]

Initially *P* and *Q* are at the same horizontal level. *P*'s initial velocity is vertically downwards and has magnitude  $2.8 \text{ m s}^{-1}$ .

(ii) Assuming that P does not reach the floor and that Q does not reach the pulley, find the time taken for P to return to its initial position. [3]

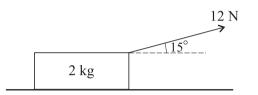


An object of mass 0.08 kg is attached to one end of a light inextensible string. The other end of the string is attached to the underside of the roof inside a furniture van. The van is moving horizontally with constant acceleration  $1.25 \text{ m s}^{-2}$ . The string makes a constant angle  $\alpha$  with the downward vertical and the tension in the string is *T*N (see diagram).

- (i) By applying Newton's second law horizontally to the object, find the value of  $T \sin \alpha$ . [2]
- (ii) Find the value of T.

1

2


[5]

- 3 A motorcyclist starts from rest at a point *O* and travels in a straight line. His velocity after *t* seconds is  $v \text{ m s}^{-1}$ , for  $0 \le t \le T$ , where  $v = 7.2t 0.45t^2$ . The motorcyclist's acceleration is zero when t = T.
  - (i) Find the value of T. [4]
  - (ii) Show that v = 28.8 when t = T. [1]

For  $t \ge T$  the motorcyclist travels in the same direction as before, but with constant speed 28.8 m s<sup>-1</sup>.

(iii) Find the displacement of the motorcyclist from O when t = 31. [6]

4



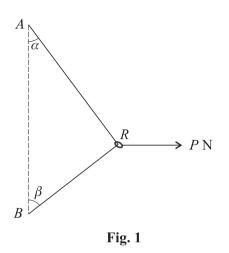
A block of mass 2 kg is at rest on a rough horizontal plane, acted on by a force of magnitude 12 N at an angle of  $15^{\circ}$  upwards from the horizontal (see diagram).

- (i) Find the frictional component of the contact force exerted on the block by the plane. [2]
- (ii) Show that the normal component of the contact force exerted on the block by the plane has magnitude 16.5 N, correct to 3 significant figures. [2]

It is given that the block is on the point of sliding.

(iii) Find the coefficient of friction between the block and the plane. [2]

The force of magnitude 12 N is now replaced by a horizontal force of magnitude 20 N. The block starts to move.

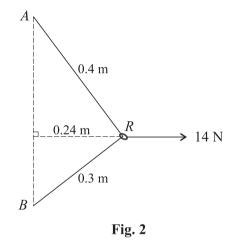

- (iv) Find the acceleration of the block.
- 5 A man drives a car on a horizontal straight road. At t = 0, where the time t is in seconds, the car runs out of petrol. At this instant the car is moving at  $12 \text{ m s}^{-1}$ . The car decelerates uniformly, coming to rest when t = 8. The man then walks back along the road at  $0.7 \text{ m s}^{-1}$  until he reaches a petrol station a distance of 420 m from his car. After his arrival at the petrol station it takes him 250 s to obtain a can of petrol. He is then given a lift back to his car on a motorcycle. The motorcycle starts from rest and accelerates uniformly until its speed is  $20 \text{ m s}^{-1}$ ; it then decelerates uniformly, coming to rest at the stationary car at time t = T.
  - (i) Sketch the shape of the (t, v) graph for the man for  $0 \le t \le T$ . [Your sketch need not be drawn to scale; numerical values need not be shown.] [5]
  - (ii) Find the deceleration of the car for 0 < t < 8. [2]

| of T. |  |
|-------|--|
|-------|--|

4728/Jan06

[5]

[4]



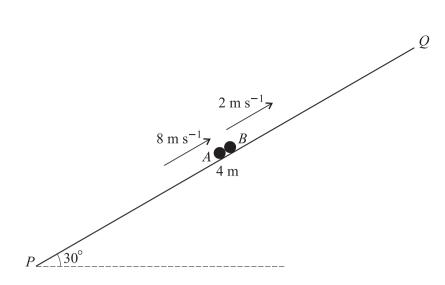

A smooth ring R of weight WN is threaded on a light inextensible string. The ends of the string are attached to fixed points A and B, where A is vertically above B. A horizontal force of magnitude PN acts on R. The system is in equilibrium with the string taut; AR makes an angle  $\alpha$  with the downward vertical and *BR* makes an angle  $\beta$  with the upward vertical (see Fig. 1).

(i) By considering the vertical components of the forces acting on *R*, show that  $\alpha < \beta$ . [3]

**(ii)** 

6




It is given that when P = 14, AR = 0.4 m, BR = 0.3 m and the distance of R from the vertical line *AB* is 0.24 m (see Fig. 2). Find

| <b>(a)</b> | the tension in the string, | [3] |
|------------|----------------------------|-----|
|            |                            |     |

(b) the value of W. [3]

(iii) For the case when P = 0,

- (a) describe the position of R, [1]
- (b) state the tension in the string. [1]



PQ is a line of greatest slope, of length 4 m, on a smooth plane inclined at 30° to the horizontal. Particles A and B, of masses 0.15 kg and 0.5 kg respectively, move along PQ with A below B. The particles are both moving upwards, A with speed 8 m s<sup>-1</sup> and B with speed 2 m s<sup>-1</sup>, when they collide at the mid-point of PQ (see diagram). Particle A is instantaneously at rest immediately after the collision.

- (i) Show that B does not reach Q in the subsequent motion. [8]
- (ii) Find the time interval between the instant of A's arrival at P and the instant of B's arrival at P. [6]

Mark Scheme

| <b>—</b>  | <del>1</del> |                                       |      | <u> </u> |                                                    |
|-----------|--------------|---------------------------------------|------|----------|----------------------------------------------------|
| 1         | (i)          | 0.3g - T = 0.3a and                   | M1   |          | For using Newton's second law (either              |
| 1         |              | T - 0.4g = 0.4a                       |      |          | particle) condone 0.3ga,0.4ga and                  |
|           |              |                                       | A1   |          | !(LHS)                                             |
|           |              |                                       |      |          | Both correct. SR Accept $T - 0.3g =$               |
| 1         |              |                                       |      |          | 0.3a etc as correct only if consistent             |
|           |              | 0.1 = -0.7                            | M1   |          |                                                    |
|           |              | -0.1g = 0.7a                          |      |          | with $a$ shown as upwards for $P$ on c's           |
|           |              | a = -1.4                              | A1   | [4]      | diagram                                            |
|           |              | See appendix for substituting         |      |          | Eliminating T                                      |
|           |              | a = -1.4                              |      |          | AG                                                 |
|           | (ii)         | $0 = 2.8t - \frac{1}{2} 1.4t^2$       | M1   |          |                                                    |
|           |              | 0 = t(2.8 - 0.7t)                     | M1   | ļ        |                                                    |
|           |              | Time taken is 4 s                     | A1   | [3]      | For using $s = ut + \frac{1}{2} at^2$ with $s = 0$ |
|           |              | OR                                    |      |          | Solving QE                                         |
| 1         | 1            | 1                                     | M2   |          |                                                    |
|           |              | (0.3 + 0.4)a = (0.3 - 0.4)g           |      | 1        | From correct equation only                         |
|           | 1            |                                       | Al   |          |                                                    |
| 1         |              | a = -1.4                              | A1   | [4]      | For using $(m_1 + m_2)a = (m_1 - m_2)g$            |
|           | (i)          | 0 = 2.8 + -1.4t                       | M1   |          | No application of SR shown above                   |
|           |              | t = 2.8/1.4                           | M1   |          | AG                                                 |
| 1         |              | Time taken is 4 s                     | A1   | [3]      | For using $v = u + at$ with $v = 0$                |
| i         | (ii)         |                                       |      |          | Solve for t, and double or any other               |
|           |              |                                       | 1    |          | <u>complete method</u> for return time             |
| L         |              | J                                     |      | 1        | complete method for retain time                    |
|           |              |                                       |      |          | 1                                                  |
| 2         | (i)          | $T\sin\alpha = 0.08 \times 1.25$      | MI   |          | Newton's second law condone cos,                   |
|           |              | = 0.1                                 | A1   | [2]      | and                                                |
|           | (ii)         | $T\cos \alpha = 0.08g$                | M1   |          | 0.08g for mass but not part of                     |
|           | Į            | 1                                     | A1   | 1        | force                                              |
| 1         |              |                                       | M1   | 1        | Resolving forces vertically, condone               |
| 1         |              | $T^2 = 0.1^2 + 0.784^2$ or $\alpha =$ | A1   |          | sin                                                |
| 1         |              | 7.3°                                  | Al   | [5]      | May be implied by $T^2 = 0.1^2 + 0.784^2$          |
|           |              | T = 0.79                              | 1    | 1        | For eliminating $\alpha$ or T                      |
|           |              |                                       |      | 1        | $\alpha = 7.3^{\circ}$ or better                   |
|           | ]            |                                       |      |          |                                                    |
| L         | L            | l                                     |      | <u> </u> | Accept anything rounding to 0.79                   |
|           |              | I                                     | 7.01 | 1        | []                                                 |
| 3         | (i)          |                                       | M1   |          | For using $a = dv/dt$                              |
|           |              | a = 7.2 - 0.9t                        | A1   |          |                                                    |
|           |              |                                       | M1   |          | For attempting to solve $a(t) = 0$                 |
|           |              | T = 8                                 | A1   | [4]      |                                                    |
|           |              | See also special case in              |      |          |                                                    |
|           |              | appendix.                             |      |          |                                                    |
|           | (ii)         | v(T) = 28.8                           | B1   | ĺ        | AG (From $7.2 \times 8 - 0.45 \times 8^2$ )        |
|           | (**)         | See also special case in              |      | 1        |                                                    |
|           |              |                                       | 1    | 1 [1]    |                                                    |
|           | <i></i>      | appendix.                             |      | [1]      |                                                    |
|           | (iii)        |                                       |      |          | For using $s = \int v dt$                          |
|           |              | $s = 3.6t^2 - 0.15t^3$ (+C)           | M1   |          |                                                    |
|           |              | s = 5.0i = 0.15i (+C)                 | A1   | 1        |                                                    |
|           |              |                                       | DM1  |          | For finding $s(T \text{ or } 31)$ or using limits  |
|           |              |                                       |      | 1        | (0) to <i>T</i> or (0) to 31 (dep on               |
|           |              | s = 153.6 (+C)                        | Al   |          | integration)                                       |
|           |              | s at constant speed = 662.4           | B1ft |          | Condone $+C$                                       |
|           |              | Displacement is 816 m                 | Alft | [6]      | For using $(31 - cv T) \times 28.8$                |
|           | i            |                                       |      | ויין     | cv 153.6 + cv 662.4 (non-zero                      |
|           |              |                                       |      |          | numerical)                                         |
| $\square$ |              | L                                     |      | 1        | numerical)                                         |

# 4728

- miner

# Mark Scheme

| 4 | (i)   | $F = 12\cos 15^{\circ}$                       | M1                       |         | Resolve hor  | rizontally (condone                   |
|---|-------|-----------------------------------------------|--------------------------|---------|--------------|---------------------------------------|
|   |       |                                               |                          |         | sin)         |                                       |
|   |       | Frictional component is 11.6 N                | <u>A1</u>                | [2]     | Accept 12c   |                                       |
|   | (ii)  | $N + 12\sin 15^\circ = 2g$                    | M1                       |         |              | t 3 forces (accept                    |
|   |       |                                               |                          | [0]     | cos)         |                                       |
|   |       | Normal component is 16.5 N                    | A1<br>M1                 | [2]     | AG           | E = M                                 |
|   | (iii) | $11.591 = \mu 16.494$                         |                          | [0]     | -            | $v F = \mu \operatorname{cv} N$       |
|   |       | Coefficient is 0.7(0)                         | Alft                     | [2]     | Ft cv F to 2 | sf. $\mu = 0.7027$                    |
|   | (iv)  | N = 2g                                        | B1                       |         |              |                                       |
|   |       | $F = 19.6 \times 0.7027$                      | M1<br>M1                 |         |              | ewton's second law                    |
|   |       | 20 - 13.773 = 2a                              | Alft                     |         | -            | - cv Friction (e.g.                   |
|   |       | 20 - 15.775 24                                |                          |         | from (i))    | - ov i notion (o.g.                   |
|   |       | Acceleration is 3.11 ms <sup>-2</sup>         | A1                       | [5]     |              | er 3.11 or 3.12 only                  |
|   |       | <b>MISREAD</b> (omits "horizontal")           | MR-1                     |         | •            | B marks now ft.                       |
|   |       |                                               |                          |         | Subtract "N  | IR-1" <u>from initial</u>             |
|   |       |                                               |                          |         |              | A1 (not A1ft in                       |
|   |       | $N = 2g - 20\sin 15$                          | B1ft                     |         | main schem   |                                       |
|   |       | F = 0.7027  x  14.4                           | M1                       |         | Equals 14.4  |                                       |
|   |       | $20\cos 15 - 10.14 = 2a$                      | M1<br>Alft               |         | Equals 10.1  | <br>lewton's second law               |
|   |       | Acceleration is $4.59 \text{ ms}^{-2}$        | Alft                     | [4]     |              | - cv Friction                         |
|   |       | Acceleration is 4.59 his                      |                          | [י]     | Accept 4.59  |                                       |
|   | 1     |                                               |                          | · · · · |              | ,                                     |
| 5 | (i)   |                                               | Graph wit                | h 5     |              | 'Wait' line                           |
|   |       |                                               | straight lin             | ne      |              | segment may not                       |
|   |       |                                               | segments                 |         |              | be distinguishable                    |
|   |       |                                               | with v sin               |         |              | from part of the t                    |
|   |       | v(m/s)                                        | valued.                  |         | B1           | axis. Attempt at                      |
|   |       |                                               |                          |         |              | all lines segments fully straight.    |
|   |       |                                               | Line segm                | ent     |              | Mainly straight,                      |
|   |       |                                               | for car sta              |         | B1           | ends on <i>t</i> -axis                |
|   |       |                                               | Line segment<br>for walk |         |              | Horizontal below                      |
|   |       |                                               |                          |         | B1           | t-axis. Ignore                        |
|   |       |                                               | stage                    |         |              | linking to axis.                      |
|   |       |                                               | Line segm                | ent     |              | Can be implied by                     |
|   |       | <i>t</i> (s)                                  | for wait                 |         |              | gap between walk                      |
|   |       |                                               | stage                    |         |              | and motor-cycle                       |
|   |       |                                               | 21:00                    |         | B1           | stages                                |
|   |       |                                               | 2 line<br>segments       | for     |              | Inverted V not U,<br>mainly straight. |
|   |       |                                               | motor-cyc                |         | B1           | Condone vertex                        |
|   |       |                                               | stage                    |         | [5]          | below x intercept.                    |
|   | (ii)  | d = 12/8                                      |                          | •••••   |              | Using gradient                        |
|   |       |                                               |                          |         | M1           | represents accn                       |
|   |       | Deceleration is 1.5 ms <sup>-2</sup>          |                          |         | A1 [2]       | Or $a = -1.5 \text{ ms}^{-2}$         |
|   | (iii) | 1                                             |                          |         |              | Using area                            |
|   |       |                                               |                          |         | M1           | represents                            |
|   |       | t = 420/0.7                                   |                          |         | D1           | displacement.                         |
|   |       | $t_{walk} = 420/0.7$<br>$t_{motorcycle} = 42$ |                          |         | B1<br>B1     | Accept 600<br>Ignore method           |
|   |       | T = 8 + 600 + 250 + 42 = 900                  |                          |         | A1 [4]       | ignore memou                          |
|   |       | 1 - 3 + 000 + 250 + 42 - 700                  |                          |         |              |                                       |

# Mark Scheme

| 6 | (i)     | $T_{\rm A}\cos\alpha - T_{\rm B}\cos\beta = W$ $T_{\rm A} = T_{\rm B} (= T)$ | M1<br>B1 |     | For resolving 3 forces<br>vertically, condone Wg, sin<br>May be implied or shown in<br>diagram |
|---|---------|------------------------------------------------------------------------------|----------|-----|------------------------------------------------------------------------------------------------|
|   |         | $\cos \alpha > \cos \beta \rightarrow \alpha < \beta$                        | A1       | [3] | AG                                                                                             |
|   | (ii)(a) | $T\sin\alpha + T\sin\beta = 14$                                              | M1       |     | Resolve 3 forces horiz accept cos                                                              |
|   |         | $\sin \alpha = 0.6$ and $\sin \beta = 0.8$                                   | DM1      |     |                                                                                                |
|   |         | Tension is 10 N                                                              | A1       | [3] |                                                                                                |
|   | (ii)(b) | $10\cos\alpha - 10\cos\beta = W$                                             | M1       |     | Must use cv T, and W (not Wg)                                                                  |
|   |         | $\alpha = 36.9^{\circ}, \ \beta = 53.1^{\circ}$                              | DM1      |     | Or $\cos \alpha = 0.8$ and $\cos \beta = 0.6$                                                  |
| 1 |         |                                                                              |          |     | <b>SR</b> -1 for assuming $\alpha + \beta = 90^{\circ}$                                        |
|   |         | W=2                                                                          | A1 ft    | [3] | ft for T/5 (accept 1.99)                                                                       |
|   |         | See appendix for solution                                                    |          |     |                                                                                                |
|   |         | based on resolving along RA                                                  |          |     |                                                                                                |
|   |         | and <u>RB.</u>                                                               |          |     |                                                                                                |
|   | (iii)   | R is below B                                                                 | B1       |     | Accept R more than 0.5 m below A                                                               |
|   |         | Tension is 1 N                                                               | B1 ft    | [2] | ft for W/2 accept W/2                                                                          |

# **Mark Scheme**

|   |      | T '4' 1                                                                                                              |            |      | (on loss in A's mean sub-                         |
|---|------|----------------------------------------------------------------------------------------------------------------------|------------|------|---------------------------------------------------|
| 7 | (i)  | Initial momentum                                                                                                     | -          |      | (or loss in A's momentum =                        |
|   |      | $= 0.15 \times 8 +$                                                                                                  | B1         |      | 0.15×8                                            |
|   |      | 0.5×2                                                                                                                |            |      | B1                                                |
|   |      | Final momentum = $0.5v$                                                                                              | B1         |      | and gain in B's momentum =                        |
|   |      |                                                                                                                      |            |      | 0.5(v-2)                                          |
|   |      | $0.15 \times 8 + 0.5 \times 2 = 0.5v$                                                                                |            |      | B1)                                               |
|   |      | $(\text{or } 0.15 \times 8 = 0.5 \times (v - 2))$                                                                    | <b>M</b> 1 |      | For using the principle of                        |
|   |      | $(01\ 0.13 \times 8 = 0.3 \times (7 - 2))$                                                                           | 1911       |      |                                                   |
|   |      |                                                                                                                      |            | F 43 | conservation of momentum                          |
|   |      | v = 4.4                                                                                                              | A1         | [4]  | condone inclusion of g in all                     |
|   |      | $(m)g\sin\alpha = (\pm)(m)a$                                                                                         | M1         |      | terms                                             |
|   |      | $a = (\pm)4.9$                                                                                                       | A1         |      | SR Awarded even if g in all                       |
|   |      | EITHER (see also part (ii))                                                                                          |            |      | terms                                             |
|   |      | $0 = 4.4^2 - 2 \times 4.9s$                                                                                          | M1         |      | Condone cos                                       |
|   |      | s = 1.97  or  1.98  m                                                                                                | A1ft       |      |                                                   |
|   |      |                                                                                                                      | AIII       |      |                                                   |
|   |      | OR                                                                                                                   |            |      |                                                   |
|   |      | $v^2 = 4.4^2 - 2 \times 4.9 \times 2$                                                                                | M1         |      | For using $v^2 = u^2 + 2as$ with $v = 1$          |
|   |      | $v^2 = -0.24$                                                                                                        | Alft       |      | 0                                                 |
|   |      | OR (see also part (ii))                                                                                              |            |      | Accept $s < 2$ iff $s = 4.4^2 / ($                |
|   |      | t = 4.4/4.9 (=0.898) with either                                                                                     |            |      | 2×4.9)                                            |
|   |      | $s = 4.4 \times 0.898 \cdot 0.5 \times 4.9 \times 10^{-10}$                                                          |            |      |                                                   |
|   |      |                                                                                                                      | 3.41       |      | For using $v^2 = u^2 + 2as$ with $s = 1$          |
|   |      | $0.898^2$ or $s = (4.4 + 0)/2 \times$                                                                                | M1         | F 43 | Ū Ū                                               |
|   |      | 0.898                                                                                                                | A1ft       | [4]  | 2                                                 |
|   |      | s = 1.97 or 1.98 m                                                                                                   |            |      | Accept $v^2 < 0$                                  |
|   |      |                                                                                                                      |            |      |                                                   |
|   |      |                                                                                                                      |            |      |                                                   |
|   |      |                                                                                                                      |            |      |                                                   |
|   |      |                                                                                                                      |            |      | Both parts of method needed                       |
|   |      |                                                                                                                      |            |      |                                                   |
|   |      |                                                                                                                      |            |      | Accept s < 2                                      |
|   | (ii) | $2 = \frac{1}{2} 4.9 t_{\rm A}^2$                                                                                    | M1         |      | cv for acceleration                               |
|   |      | $t_{\rm A} = 0.904$                                                                                                  | A1         |      | Accept 0.903= <time=<0.904< td=""></time=<0.904<> |
|   |      | EITHER                                                                                                               |            |      |                                                   |
|   |      | $2 = (-4.4)t_{\rm B} + \frac{1}{2} 4.9 t_{\rm B}^2$                                                                  | M1         |      | Appropriate use of $s = ut + \frac{1}{2}$         |
|   |      | $t_{\rm B} = (4.4) \oplus (4.4^2)$                                                                                   | M1         |      | $at^2$ Correct method for solving                 |
|   |      | (4.4) $(4.4)$ $(4.4)$ $(4.4)$ $(4.4)$ $(4.4)$ $(4.4)$                                                                | Al         |      | QE                                                |
|   |      |                                                                                                                      |            |      |                                                   |
|   |      | $t_{\rm B} = 2.17$                                                                                                   | A1         |      | 2.171                                             |
|   |      | $t_{\rm B}$ . $t_{\rm A} = (2.17 - 0.9) = 1.27  \rm s$                                                               |            |      |                                                   |
|   |      | OR                                                                                                                   | M1         |      |                                                   |
|   |      | $t_{\rm up} = 4.4/4.9 (=0.898)$                                                                                      | M1         |      | Or using $s_{up}$ to find $t_{up}$                |
|   |      | $(2+1.98) = 0.5 \times 4.9 \times t_{down}^2$                                                                        | A1         |      | $s = ut + \frac{1}{2} at^2$ with cv s in part     |
|   |      | $t_{\rm down} = 1.27$                                                                                                | A1         |      | (i)                                               |
|   |      | $t_{\text{down}} = 1.27$<br>$t_{\text{B}} \cdot t_{\text{A}} = (0.9 + 1.27 - 0.9) = 1.27 \text{s}$                   |            |      | Not the final answer                              |
|   | 1    | •                                                                                                                    |            |      |                                                   |
|   |      | OR                                                                                                                   | ł          |      |                                                   |
|   |      |                                                                                                                      | 1 3 4 4    |      |                                                   |
|   |      | $0 = 4.4t - \frac{1}{2} 4.9t^2$                                                                                      | M1         |      |                                                   |
|   |      |                                                                                                                      | M1         |      | $s = ut + \frac{1}{2} at^2$ with $s = 0 = 1.796$  |
|   |      | $0 = 4.4t - \frac{1}{2} 4.9t^2$                                                                                      | M1<br>M1   |      | $s = ut + \frac{1}{2} at^2$ with $s = 0 = 1.796$  |
|   |      | $0 = 4.4t - \frac{1}{2} 4.9t^2$<br>(i.e. approx 1.8 s to return to                                                   |            |      | $s = ut + \frac{1}{2} at^2$ with $s = 0 = 1.796$  |
|   |      | $0 = 4.4t - \frac{1}{2} 4.9t^{2}$<br>(i.e. approx 1.8 s to return to<br>start)<br>$2 = 4.4t + 4.9t^{2}$              | M1<br>A1   | [5]  | $s = ut + \frac{1}{2} at^2$ with $s = 0 = 1.796$  |
|   |      | $0 = 4.4t - \frac{1}{2} 4.9t^{2}$<br>(i.e. approx 1.8 s to return to<br>start)<br>$2 = 4.4t + 4.9t^{2}$<br>t = 0.376 | M1         | [5]  | $s = ut + \frac{1}{2} at^2$ with $s = 0 = 1.796$  |
|   |      | $0 = 4.4t - \frac{1}{2} 4.9t^{2}$<br>(i.e. approx 1.8 s to return to<br>start)<br>$2 = 4.4t + 4.9t^{2}$              | M1<br>A1   | [5]  | $s = ut + \frac{1}{2} at^2$ with $s = 0 = 1.796$  |